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Model hysteresis dimer molecule II: deductions
from probability profile due to system coordinates
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The hysteresis dimer reaction of the first sequel is applied to test the Gibbs
density-in-phase hypothesis for a canonical distribution at equilibrium. The probabil-
ity distribution of variously defined internal and external variables is probed using the
algorithms described, in particular the novel probing of the energy states of a labeled
particle where it is found that there is compliance with the Gibbs’ hypothesis for the
stated equilibrium condition and where the probability data strongly suggests that an
extended equipartition principle may be formulated for some specific molecular coor-
dinates, whose equipartition temperature does not equal the mean system temperature
and a conjecture concerning which coordinates may be suitable is provided. Evidence
of violations to the mesoscopic nonequilibrium thermodynamics (MNET) assumptions
used without clear qualifications for a canonical distribution for internal variables are
described, and possible reasons outlined, where it is found that the free dimer and atom
particle kinetic energy distributions agree fully with Maxwell–Boltzmann statistics but
the distribution for the relative kinetic energy of bonded atoms does not. The prin-
ciple of local equilibrium (PLE) commonly used in nonequilibrium theories to model
irreversible systems is investigated through NEMD simulation at extreme conditions of
bond formation and breakup at the reservoir ends in the presence of a temperature gra-
dient, where for this study a simple and novel difference equation algorithm to test the
divergence theorem for mass conservation is utilized, where mass is found to be con-
served from the algorithm in the presence of flux currents, in contradiction to at least
one aspect of PLE in the linear domain. It is concluded therefore that this principle
can be a good approximation at best, corroborating previous purely theoretical results
derived from the generalized Clausius Inequality, which proved that the PLE cannot be
an exact principle for nonequilibrium systems.
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1. Introduction

The previous sequel provided details of the method and characteristics of
the dimer reaction system

2A
k1
�
k−1

A2, (1)

where k1 and k−1 are the respective rate constants. The methods used to ensure
accuracy and convergence of results for the time steps used were also discussed
in that sequel. In this work, the system is probed for probability distribution
functions, and an NEMD simulation of the dimer system is also carried out to
study the applicability of one aspect of PLE. The details of the principle of local
equilibrium computations, together with the precautions used to ensure repro-
ducibility of results are discussed in [1]. Indeed, for the NEMD portion, the ver-
ification here of conservation of mass can only imply convergence of the system
to a steady state. Comparisons between the theoretical Maxwell distribution to
that derived from equilibrium simulations is carried out in section 2 because fun-
damental deductions can be made concerning the theory and applications of the
canonical distribution. Additional results are presented in section 3 from NEMD
using a novel difference equation which can be used to check for conservation
of matter. Here, it is found that current fluxes exists in regions when this would
not be expected according to one aspect of PLE. The NEMD runs were used
to ascertain whether PLE is indeed a principle or merely a good approximation
for describing general thermodynamical systems (whether reversible or not). It
is concluded that simulations provide examples that go beyond linear and local
equilibrium theories.

2. Probability histograms

These are provided in figures 1–7 for the translational kinetic energies of
the different species probed as well as the total internal energy of the dimer,
plotted with the Maxwell distribution relative to the apparent temperature deter-
mined from (4). The comparisons provide clues to the following:

• Shape of the probability function P could perhaps be used to deter-
mine whether the assumptions used in theories are reasonable or not. The
shape even for this equilibrium system is not always Gaussian, and so
there is no reason to assume a priori that nonequilibrium systems must
conform to a Gaussian distribution where certain internal variable are
concerned.

• Provide a rationale for extending the theory of equipartition in an equi-
librium system where the temperature relative to a particular kinetic
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Figure 1. P function for translational kinetic energy of A2 about C.M. at system temperature
T ∗

set = 8.0 and ρ = 0.7, with apparent temperature of molecule indicated.
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Figure 2. P function for kinetic energy of any atom A bonded to A2 at system temperature T ∗
set =

8.0 and ρ = 0.7. The apparent nonBoltzmann kinetic energy temperature of these bonded atoms is
〈T 〉kin = 8.10 ± 0.01.

energy coordinate is not the same as for the total system temperature
determined from standard equipartition. Such a possibility seems to be
supported by the evidence below.

The method of determining these probability histograms involve sampling
at each time step the respective quantities, binning the values of the particular
distribution, followed by normalization. Such a method ensures that an accuracy
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Figure 3. P function for average kinetic energy of atom A by K.E.(2) method at system tempera-
ture T ∗

set = 8.0 and ρ = 0.7 with total system temperature indicated where apparent nonBoltzmann
kinetic energy temperature of these bonded atoms is 〈T 〉kin = 8.10 ± 0.01.
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Figure 4. P function for total IKE of the two bonded A atoms about the internuclear axis at system
temperature T ∗

set = 8.0 and ρ = 0.7.

is obtained that is able, for instance, to discriminate between the different appar-
ent species temperatures. For a given Hamiltonian H weakly coupled to a heat
bath written

H =
N∑

i=1

p2
i

2mi
+ V(r1, r2, . . . , rn), (2)
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Figure 5. The TIEC distribution as given in the text. The error bars are for 100 standard error units
at T ∗

set = 8.0 and ρ = 0.7.
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Figure 6. P function for kinetic energy of fixed indexed atom A, which either is bonded to some
A2 dimer or not at system temperature T ∗

set = 8.0 and ρ = 0.7 with apparent temperature of atom
〈T 〉atom = 8.1 ± 0.2.The uncertainty here is three standard error units.

where V is the potential that is position variable r dependent, the probability
density function per unit area of phase space (p, q) is

P(p, q) = exp −βH
Z , (3)
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Figure 7. P function for kinetic energy of free (unbonded) random atom at system temperature
T ∗

set = 8.0 and ρ = 0.7 with apparent temperature of random atom indicated.

where the partition function Z has the form

Z =
∫

e−βHdp dr
N ! .

The separability of the Hamiltonian above for the momentum p and position
variables r, which is of the same form as our chemical system Hamiltonian (aug-
mented by switches) leads for large N to the exact result [in 3-dimensional (3-D)
systems] (usual laboratory units)

N

(
3kT

2

)
=

∑

i

p2
i /(2mi ), (4)

which is the method used to determine the system temperature here. The
momentum coordinates pi refer to all atomic species, whether bonded or not.
The Gibbs postulate can be directly tested for the chemical reaction system to
verify whether or not the switching mechanism modifies or contradicts the pos-
tulate, which refers to the time average of a system property being equal to the
ensemble average when these limits exist. Experimentally (Figure 6), it is found
that switches in nonsingle-valued Hamiltonians does not affect the Gibbs postu-
late. Furthermore, over the time of the simulation, for the indexed particle I , the
following (3-D) result must hold so that the particle and system temperature is
defined:

3kTt/2 =
〈
p2

I /(2m I )
〉
, (5)
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where the brackets represents the time average. It is found that the temperature
Tt above of this single indexed particle coincides with the mean system temper-
ature whether the particle is bonded or not over the trajectory equally weighted
in time for all the states that it traverses. Integrating the P function in (3) over
all equal energy values, the Maxwellian probability density function results, and
is given per unit energy increment by

P = 2π

(
1
π

kT

)3/2

ε1/2 exp −
( ε

kT

)
. (6)

Equation (6) is the standard form used for the absolute velocity distribution
function. The above form is still derived from the quantum probability opera-
tor/function

P̂(Ω) ∝ exp −β Ĥ(p, q), (7)

where the phase space is averaged over equi-energy surfaces. Equation (7) also
makes the definition of the partition function Q possible as

Q =
∑

i

ωi exp −βEi (p, q)

for a system where even for Q, (p, q) represents the canonical coordinates only.
The Gibbsian and other thermodynamical state functions are derived strictly
from operations on Q, e.g. U = kT 2( ∂ ln Z

∂T )V,N for the energy and P =
kT ( ∂ ln Z

∂V )T,N for the pressure. Other internal coordinates cannot (unless proved
otherwise) give rise to state functions where standard statistical mechanics is
concerned.

An apparent temperature parameter 〈T 〉X is computed here for some spe-
cies X and is defined such that

3 < T >X

2
=

〈
p2

X

2m X

〉
, (8)

where m X is the mass of species X and pX is its momentum variable. This
parameter is clearly not well defined as a temperature if it does not obey the
equipartition result above for the obvious reasons connected to conjugate trans-
forms. In statistical thermodynamics, the total system Hamiltonian

H =
m∑

i=1

p2
i /2m +

∑

i< j

V (ri − r j ) (9)

leads to the density-in-phase having form

ρ(p, q) ∝ exp[−H(p, q)/kT ] (10)
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and so for systems with separable coordinates, each kinetic energy coordinate
Ek,i = p2

i /2m and potential form V (|ri −r j |) will have the above Boltzmann dis-
tribution. The (p, q) coordinates are termed “canonical” and equipartition and
the distribution laws are derived relative to these coordinates only [2].

However, the “internal coordinates” during a chemical reaction or other
process refer to an artificial aggregation – meaning they are transient species –
such as the center of mass (C.M.) velocity and position for particles k, l form-
ing a molecule which is not permanent, e.g. P j = pk + pl (k �= l), R j =

1
mk+ml

(rk + rl) and so these are not canonical coordinates in the defined sense
[2] and there is no immediate reason a priori that these coordinates for the inter-
nal energy or potential must have Boltzmannized distributions. It could well
be that if the mean lifetime τ of the species obeyed τ → ∞ , then they
might qualify as a pseudo-canonical variable, but a theory for such limits does
not seem available. Permanent aggregated states can be expressed in terms of
canonical transformations Q = Q(p, q), P = (p, q) [2, Chap. VII] and the new
Hamiltonian that results must by ensemble theory be subjected to the density
distribution described above. But for systems which are described by “internal”
coordinates of a nonpermanent nature (in the sense that the forces between the
particles cease when the molecule decomposes) and which does not refer to the
system Hamiltonian, no general theory exists, and no presuppositions can be
made regarding their density distributions. It may be remarked that in statisti-
cal mechanics for canonical distributions, average quantities M (corresponding
to classical thermodynamical state functions) are defined as M = ∑N

i=1 Mi Pi ,
where Pi is the probability of state i with value Mi . The partition function
Q = ∑N

i=1 gi exp − εi (p,q)
kT for the system has been defined so that operations on

it ÔM [Q] yields the average value for property M [3, p. 422], e.g.

ÔE [Q] = NkT 2 d ln Q

dT
= E (11)

yields the total energy due to translational kinetic energy for systems that conform
to the canonical probability law. It follows that the density-in-phase are correlated
to the (p, q) phase space volume elements, and that the canonical (p, q) coordinates
or their equivalents are central to the above procedure. Clearly, when the process
defined by the coordinates are not canonical, then it is not in general correct to
insist by necessity that any coordinate combination is “self-similar” to a canonical
coordinate set, with a canonical probability distribution. Nevertheless, theories
purporting to be fundamental have been created that assumes the Gaussian den-
sity for internal variables to be true [4,5] without clear qualification concerning
the situation when this condition obtains. For instance the Gibbs energy and all
other thermodynamical state functions are derived from the partition function
through averaging with the canonical distribution, which pertains to the entire
system taken as a whole; to infer that each microscopic portion of the system at a
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particular phase-space coordinate is necessarily self-similar to the whole is incor-
rect, as a few counter-examples to this proposition follows below (figures 2–4).
Furthermore, the PLE has been proposed as essential [4] for these new theories,
and another counter-example to this is also provided, this time from a NEMD
simulation. In other words, basic simulation is able to determine the veracity of
theories, and in particular, the hysteresis system described here does not support
the novel theoretical developments in “mesoscopic” level thermodynamics. The
total internal energy coordinate (TIEC) and the internal kinetic energy coordi-
nate (IKE) are not Gaussian distributions for equilibrium systems according to
the simulation results below. Of great theoretical interest is that for cases of non-
permanent coordinates, some types of distributions are essentially Bolztmannized,
others are not, even for an equilibrium system. It would be of great significance
and interest to provide criteria which can predict when a Boltzmann distribution
can be expected. The apparent temperature parameter 〈T 〉X may well qualify as
a temperature in an extended equipartition scheme if there is agreement with the
Maxwellian distribution even if this temperature does not correspond to the unique
system temperature 〈T 〉sys. Here the degree of agreement with the Maxwell dis-
tribution is either very good (in some cases), or rather bad. It would be of great
theoretical interest if some form of relationship between the apparent tempera-
tures could be made on the basis of internal energetics. The uncertainly (unless
stated otherwise) is of the order as given in the error bars of figure 5, which is at
100 standard error units and which would not feature in any figure where errors
are typically quoted at three standard error units. This figure corresponds to the
TIEC distribution. The errors in the temperature are are given in figures 1–7. Fig-
ure 1 shows that the C.M. kinetic energy follows quite accurately a Maxwellian
P function with a temperature parameter higher (T ∗ = 8.33) than the system
temperature (T ∗

set = 8.0 ). The fact that the shape is Maxwellian at the indicated
temperature parameter does seem to imply that theories may be developed within
an equilibrium system with different coexisting temperatures provided that these
parameters require that a Maxwellian form regarding shape prevails, and after
that stage one perhaps might also be able to propose generalizations to tempera-
ture not requiring a Maxwellian distribution; but a proper theory would have to
begin from first principles which can subsume without contradiction the previous
axiomatics, including the Zeroth Law. Another inference is that these nonstandard
“temperatures” have definite values (or limits), where the degree of scattering is
relatively low; hence one might expect some type of stochastic averaging which
yields exact values (limits). How these averages are performed, and the theoretical
justification for these averages remain significant challenges. The other important
scientific question is the explanation of the shift of “temperature” 〈T 〉X for such
Boltzmann distributions for nonpermanent aggregates.

An atom bonded to a molecule does not have a clear Maxwellian shape,
as is evident from figures 2 and 3 since there is interference from the internucle-
ar potentials. The graph in figure 2 computes the absolute kinetic energy (AKE)
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(also denoted K.E.(1))of the particle with respect to the MD cell, whereas fig-
ure 3 refers to half the relative kinetic energy and half the translational kinetic
energy about the C.M. of the bonded pair, where the relative kinetic energy
εk.e.rel., is written as

εk.e.rel. = 1
2
µ(ṙ1 − ṙ2)

2 = 1
2
µṙ2 (12)

for any two bonded atoms 1 and 2, where the reduced mass µ is given as 1
µ

=
1

m1
+ 1

m2
and where the intermolecular axis vector is r = r1 − r2. The total IKE

is also defined as the relative kinetic energy of a bonded pair, given as εk.e.rel. as
above. The AKE averages

1
2

· 1
2
(v1 − v2)

2 = 1
4

{
v1

2 + v2
2 − v1.v2

}
,

whereas the kinetic energy about the C.M. (KCM) averages the expression

1
2

· 2
(v1 + v2)

2

22
= 1

4

{
v1

2 + v2
2 + v1.v2

}
.

Adding these expressions and then dividing by 2 would lead to convergence of
the result to that for AKE, which is what is presented in figure 3 as K.E.(2),
which is almost the same graph as for figure 2. The reason for this computation
was to check for consistency of result for the two different sampling techniques.

The IKE distribution, that of an internal coordinate, is clearly non-Gauss-
ian, as depicted in figure 4. This result is not consistent with the assumptions of
mesoscopic nonequilibrium thermodynamics [4,5].

TIEC defined above refers essentially to the vibrational and rotational
kinetic energy of the molecule Etiec since the translational kinetic energy about
the C.M. has been factored away where

Etiec = V (|ri − rj|) + µṙ2

2
, (13)

where V (|ri − rj|) = u0 + 1
2 k(r − r0)

2. Hence the intermolecular potential would
play an important part in determining the motion along the internuclear axis,
with the environmental potential due to other particles playing a moderating
role by introducing stochasticity to an otherwise plainly mechanical system. The
probability of occurrence of a state is proportional to the time spent at any con-
figuration according to Gibbs, and with a harmonic potential, most of the time
spent will be at the turning points in simple harmonic motion (SHM). In the
molecular potential used there is a “dissociation hump” just prior to the disso-
ciation limit, leading to a departure from the Maxwell (M) distribution; other
reasons for departure from the M distribution include the dissociation itself, pre-
cluding higher energy states from being accessed. It is clear that the distribu-
tion in figure 5 is non-Maxwellian and corresponds faintly with the shape of
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the molecular potential energy function, with its humped potential near the dis-
tance of dissociation. SHM in conjunction with permanent canonical coordi-
nates has been used as a classic description of equipartition. If the particles were
bonded permanently, this quantity would have a canonical distribution, which
it clearly does not because bonds are formed and broken at a rate that pre-
cludes adjustment to a Gaussian probability factor. This distribution, which also
refers to an internal coordinate for total internal molecular energy, is not con-
sistent with some recent nonequilibrium theories [4,5], which assumes without
proof that these Gaussian factors must obtain.

Noting that the accuracy of the single particle is reduced by a factor of
≈ 4000 (the number of particles in this simulation), we find that the Gibbs
postulate seems to be verified in terms of the shape of the P function (which
appears Maxwellian) as well as the computed value of the temperature with the
error estimated as ±0.2 by studying an atom of fixed label (no. 29) as it forms
and breaks bonds with neighboring molecules, as shown in figure 6. Clearly the
time average of dynamical properties for this particle would equal the ensemble
average. We notice that the reduced accuracy of the sampling is reflected in the
greater scatter of the P function points. The time averaged particle temperature
corresponds within error to the system temperature.

Finally, since the molecular P function has been mentioned, it would be
interesting to compare it to the case of a random, but always free A particle
which is given in figure 7, where the determined temperature is slightly lower, (to
within the error limits) than the system temperature, and where the shape of the
P curve is Maxwellian. This particular species type cannot fulfill the Gibbs pos-
tulate because its trajectory is confined to those areas where there is no molecu-
lar formation, and so its time averaged properties like the temperature need not
necessarily equal that for the system as a whole as determined from the equipar-
tition principle. We can conclude that the energy subsystems that can be chosen
for devising a theory of unequal temperature distributions in an equilibrium sys-
tem all of which have a Maxwellian probability profile include at least the fol-
lowing candidates:

• Translational k.e. about C.M. for A2;

• Fixed indexed k.e. of particle A (in both free and bonded state);

• Random, always unbonded k.e. of particle A.

The following is suggested as a result the above observations.

Conjecture 1. If the random forces are external to the subsystem, and they all
have the same force law when acting on the particles of the system which may be
different from the force law for internal forces acting on the particles of the same



904 C.G. Jesudason / Model hysteresis dimer molecule II

subsystem, then the kinetic energy of the C.M. of the subsystem would have a
probability distribution that is Maxwellian.

The above conjecture is weak as it stands and should be supported by a
theoretical approach using stochastic calculus.

3. NEMD results

A NEMD simulation was conducted with the thermodynamical variable
distribution for temperature and number density depicted in figure 8. The results
presented here are additional to the results presented elsewhere (Case 2 simula-
tion) [1] for the same thermodynamical conditions, where this time, we concen-
trate on the flow properties of the system, rather than the static property of the
equilibrium constant variation across the cell given previously. Figures 9 and 10
are the flux and divergence of the flux for “Case 2” simulation where a tem-
perature gradient across the MD cell is imposed together with the making and
breaking of bonds at the ends of the cell leading to a molecular flux according
to the thermodynamical conditions and rate details of the breaking and forma-
tion of bonds as given in [1]. The cell is broken up into 64 layers along the X-
direction and the thermostats are placed at the ends of the layers. Figure 9 has
overlapping error bars with magnitudes that do not change significantly over the
range where the fluxes are evident. The stationary source and sink quantities are
denoted σ (σ f and σb are the rate of formation and breakdown of the dimer in
unit time and unit volume, respectively, throughout the cell). The conservation of
mass equation for atoms and dimers read as follows, where the subscripts refer
to the species label for the flow vector J and the concentration c:

dcA2/dt = −∇ · JA2 + σ f − σb,

dcA/dt = −∇ · JA − 2σ f + 2σb. (14)

The steady state conditions are

∇ · JA = −2(σ f − σb) = −2σr ,

∇ · JA2 = σr , (15)

where (σ f − σb) = σr and σr is a scalar flux. At thermodynamical equilibrium,
σr = 0. If the PLE were valid in the sense that for chemical reactions which
are in a state of local equilibrium, the affinity of the reaction A is zero lead-
ing to zero σr , then the JA, JA2 fluxes must vanish; clearly here, this is not the
case. Some elaboration seems necessary. The affinity is defined as A = ∑n

i=1 νiµi ,
where µi is the chemical potential. The Gibbs equilibrium criterion is equivalent
to the affinity vanishing at constant pressure and temperature. The rate σr can-
not be linearly proportional to the temperature gradient, if the common under-
standing of the Curie symmetry principle is used [6, p. 21]. One can couple a
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Figure 8. Temperature and density profile for Case 2 simulation along the MD cell which was
divided up into 64 layers in the X -axis direction.
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flow Ji of substance i and rate v according to the linear thermodynamic equa-
tions

Ji = Lii
d

dx

1
T

+ Lic
A

T
,

(16)

v = Lci
d

dx

1
T

+ Lcc
A

T
.
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Figure 10. Test of divergence theorem for mass conservation via a difference equation.

In such an understanding, Lic = 0 or else a scalar cause A/T produces a vector
effect Ji . So Lci = 0 also by the reciprocity condition. Hence in the naive sense
above, one would not expect flows to be present along the cell where is no arti-
ficial (externally imposed) formation or breaking of bonds for the reasons that
follow. One might argue that Lii �= 0 induces the flow; but it was found that no
perceptible flow was observed when there was no breaking or forming of bonds
at the reservoir ends; but in any case (17) suggests that the rate is due only to
the Affinity not being zero, and the conservation equations show that the diver-
gence of the flow being related to the chemical rate v = σr . If the rate were zero
over the whole length of the cell, then if the flow rate JA(JA2) were zero at one
end of the cell, then by integration it would also be zero along the whole cell
length; experimentally the flow is zero at one of the ends (at colder temperature),
so a zero reaction rate v everywhere implies zero flow rate elsewhere under these
conditions. To check for flux conservation, the divergence term is discretized by
integration over one layer, using the trapezoidal rule, where for any layer i ,

∫ i

i−1
∇ · JA2dV = (σr (i) − σr (i − 1))�V

2
= JA2,di f (i) = JA2(i) − JA2(i − 1),(17)

where the layer has volume �V . Similarly, for the atomic fluxes,

JA,di f (i) = JA(i) − JA(i − 1) = −(σr (i) + σr (i − 1))�V . (18)

Equation (15) says that

2∇ · JA2 + ∇ · JA = 0, (19)
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which may be expressed as

Jd(i) = 2JA2,di f (i) + JA,di f (i) = 0. (20)

The plot of Jd given in (20) in figure 10 complies with the conservation law
rather well, within statistical error. We have therefore shown that PLE in the
above sense is not a rigorous principle from numerical simulation with this
counter-example. Another from NEMD concerning equilibrium constants has
been reported [1]. It has been shown that local stochastic equilibrium dynamical
variables do not necessarily have Gaussian (Canonical) distributions. Both these
conditions are demanded as being essential by some specialists [4,5,7] in their
theories. The theoretical developments concerning PLE begins with the general-
ized Clausius Inequality,

∮
–dQ[q]

T
≤ 0, q ∈ {

adia, tot
}
,

where [1] two separate forms of heat obtain where (i) adia refers to a diather-
mal heat transfer across the primary system boundary whereas (ii) tot refers to
a nonlocal heat term which includes various heat transfer terms due to stan-
dard state substance and thermal reservoirs, heat pumps and the primary sys-
tem. The inequality above holds for both types of heat transfers separately. It is
deduced [1, Corollary 1] that it is impossible for any irreversible pathway, which
exchanges heat P ′

B A connecting two equilibrium states A, B to to contain the
same sequence of points as PB A, that for the equilibrium pathway for all PB A.
The set of all equilibrium states (which are points in the thermodynamical space)
is Σ where PAB ⊂ Σ, where the set of points in PB A (or PAB) is denoted {ω}.
It is shown that P ′

B A = {ω} ∪ {�} where � /∈ Σ. The theoretical development [1]
does not provide a specific form for � but physical considerations suggests that
this variable includes spatial gradients and time derivatives of Σ. As such, the
theoretical development states that the use of simple differentials of equilibrium
state functions used routinely to describe nonequilibrium systems is incomplete.
It is suggested here that this incompleteness shows up in the NEMD simulation
results provided here which is not well described by the first order linear ther-
modynamics theory in conjunction with the Gibbs equilibrium criterion.

4. Conclusion

It is shown through numerical counter-examples that the PLE and the
canonical averaging assumption used in recent thermodynamical theories as fun-
damental and required assumptions are approximate in nature, at best. In canon-
ical averaging, the internal variables do not have the same algebraic structure as
the variables that are explicitly featured in the system Hamiltonian. A previous
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work [1] shows that the PLE neglects other variables not found in the equilib-
rium state space. It would be of interest to repeat and compare some of the
above calculations for a more conventional system without hysteresis to defini-
tively rule the effects of artifacts due to the use of these novel potentials. The
NEMD simulation provides an example of a system that may be better described
by theories that go beyond linear and local equilibrium theories.
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